

Computational Argumentation for Fair and Explainable Al Decision-making

Elfia Bezou-Vrakatseli, Madeleine Waller, Andreas Xydis

June 23th

Conference on Fairness, Accountability, and Transparency (FAccT 2025) Athens, Greece

Aboutus

UKRI CENTRE FOR Doctoral training

The Alan Turing Institute

Online Handbook of Argumentation for Al

Thanks to Daphne Odekerken for contributions to the slides!

What is argumentation?

https://www.menti.com/al1t4176xes4

Which words come to mind when you think of argumentation?

IN PINOUS 15. Can an Al dev 21. Will the futu 44. Does reliance a IA bluodz .2 43. Is it possibl. 42. Should humans

Spin the wheel for a topic

- 2min to prepare
 - Arguments for
 - Arguments against
- 2min to debate

Argumentation theory

What is an argument? Why do we argue?

- "A statement, reason, or fact for or against a point" ¹
- "A course of reasoning aimed at demonstrating truth or falsehood"²
- "A discussion involving differing points of view" ³
- "An address or composition intended to convince or persuade" ⁴

Internal Reasoning

- Information processing
- Reasoning about beliefs, goals, intentions

p: Left is the fastest route.c: I will go left.r: I want to take the fastest route.

Commonsense reasoning: defeasible

- Inconsistent information
- Knowledge often uncertain or incomplete:
 - conclusions under certain assumptions
 - retract conclusions once learn an assumption is unwarranted

 \rightarrow Non monotonic logic

Actually, today, I will go right because there is an obstacle on the left.

Interaction with other agents

Dialogue

- Tool of interaction & communication
- Enables understanding of both parties involved
 - Information
 - Reasoning exploration
- ☞ Joint reasoning

Formalising Argumentation

What is computational argumentation?

- Formalisation of argumentation theory
- Used to support human-computer interactions and computer-computer interactions
- Applications include:
 - providing reasoning and explaining decision-making
 - natural language processing and generation tasks

Abstract Argumentation

Disregards the internal structure of arguments and focusses on acceptability conditions that allow certain sets of arguments to co-exist in a rational manner based on a **given attack relationship between arguments**.

(P. M. Dung, 1995)

Should I go right or left?

Argument 1 (A1)

Going left is the fastest route, therefore I should go left

Argument 2 (A2)

Today there is an obstacle to the left, therefore I should go right

[1] Phan Minh Dung (1995). "On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n–person games". *Artificial Intelligence*. **77** (2): 321–357.

Has social media been good for humanity?

A1: Social media has been good for humanity

A2: Social media has not been good for humanity

A3: Social media can be good to find news

A4: We cannot verify if that news is real or not

A5: Social media puts privacy and data at risk

Label-based semantics

IN if all its attackers are out (or no attackers)

OUT if it has an attacker that is in

OUT if it has an attacker that is in

UNDEC if not all its attackers are out and it does not have an attacker that is in

Argument 1 (A1)

Going left is the fastest route, therefore I should go left

Argument 2 (A2)

Today there is an obstacle to the left,

therefore I should go right

OUT if it has an attacker that is in

UNDEC if not all its attackers are out and it does not have an attacker that is in

Argument 1 (A1)

Going left is the fastest route, therefore I should go left

Argument 2 (A2)

Today there is an obstacle to the left,

therefore I should go right

OUT if it has an attacker that is in

UNDEC if not all its attackers are out and it does not have an attacker that is in

Argument 1 (A1)

Going left is the fastest route, therefore I should go left

Argument 2 (A2)

Today there is an obstacle to the left,

therefore I should go right

Has social media been good for humanity?

A1: Social media has been good for humanity

A2: Social media has not been good for humanity

A3: Social media can be good to find news

A4: We cannot verify if that news is real or not

A5: Social media puts privacy and data at risk

OUT if it has an attacker that is in

OUT if it has an attacker that is in

OUT if it has an attacker that is in

OUT if it has an attacker that is in

UNDEC if not all its attackers are out and it does not have an attacker that is in

We call this a complete labelling

Has social media been good for humanity?

A1: Social media has been good for humanity

A2: Social media has not been good for humanity

A3: Social media can be good to find news

A4: I read on social media that we cannot verify whether news on social media is real or fake

A5: Social media puts privacy and data at risk

OUT if it has an attacker that is in

OUT if it has an attacker that is in

Other Labellings

Grounded labelling – minimise the arguments that are IN

Preferred labelling – maximise the arguments that are IN

Stable labelling – no UNDEC arguments

Semi-stable labelling – minimise the arguments that are UNDEC
Implementation

http://argteach.herokuapp.com

Bipolar argumentation frameworks (BAFs)

- Adds support relations to abstract argumentation frameworks
- Semantics defined differently to account for this:
 - An argument is accepted only if it is directly defended or supported by arguments that are themselves already accepted in a grounded manner.

Weighted argumentation frameworks (WAFs)

Adds numerical values to the abstract argumentation graph

Intrinsic weights assigned to arguments/attacks/supports representing their initial strength

Higher weights indicate stronger arguments/attacks/supports and therefore have more influence on the final acceptability calculated

Semantics used to calculate final weights of arguments based on the weights of incoming arguments/attacks/supports

Safe & Trusted AI

- Humans & Al Systems
 - Interaction & Communication
 - Human-Al Dialogue
 - Joint Reasoning
- Argumentation
 - Real-world Reasoning
 - Justification for its claims
 - Explainability & Transparency in Decision Making

Argument

Access to legal abortion improves the health and safety of pregnant people so pregnant people should have the right to choose abortion

Argumentation for XAI

Solving conflicts in multi-agent systems

Supporting human-computer interaction through transparent reasoning Providing clear and intuitive justifications for AI decisions

G. Vilone & L. Rizzo. XAI and Argumentation Special Track. The 3rd World Conference on eXplainable Artificial Intelligence.

Types of argumentative explanations

Ø	Intrinsic	Explaining recommender systems built on argumentation
N	Post-hoc (complete or approximate)	Explaining Bayesian networks using argumentation abstractions Approximating multi-layer perceptron with argumentation

K. Cyras et al. 2021. Argumentative XAI: A Survey. IJCAI 2021 Survey Track.

Bias detection

workclass	education	race	Classification
Local-gov	Bachelors	Black	—
Private	Bachelors	White	+
Local-gov	HS-grad	White	+
Local-gov	Bachelors	White	+
Private	Masters	White	+
Local-gov	Masters	White	+

Smallest final weight(s) = attribute value(s) that contribute the most to the negative classification

M. Waller et al. 2024. Identifying Reasons for Bias: An Argumentation-Based Approach. AAAI 2024.

FROM THEORY TO PRACTICE: ARGUMENTATION IN ACTION

Application: **Dutch Police**

Application: **Dutch Police**

Online Handbook of Argumentation for Al

Trends in argumentation research

Theory	65,12%
Application	41,86%
Abstract Argumentation	55,81%
Structured Argumentation	37,21%
Argument Mining; NLP	16,28%
Dialogues	34,88%
Explainable/Responsible Al Logic	25,58% 18,60%
Neural Networks	9,30%
Complexity	9,30%
Multi-Agent Systems	6,98%
Enthymemes	9,30%
Other	30,23%

Please provide us some feedback!! https://forms.gle/fZsqyL5Tu6LkoCFF7

